Ergodic Theory - Week 3

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

1 Uniform Distribution of Sequences

P1. Let (X, \mathcal{A}, μ, T) be a measure-preserving system and let $A \in \mathcal{A}$ be a set of positive measure. Prove Khintchine's theorem: for any $\varepsilon > 0$, the set

$${n \in \mathbb{N} \colon \mu(A \cap T^{-n}A) \ge (\mu(A))^2 - \varepsilon}$$

has bounded gaps.

Let $f = \mathbb{1}_A$ be the indicator function of our set A and let $\varepsilon > 0$. Applying the uniform mean ergodic theorem from the last notes, we deduce that

$$\lim_{M-N\to+\infty} \frac{1}{M-N} \sum_{n=N}^{M-1} T^n f = f_{\text{inv}}.$$

where convergence takes place in $L^2(\mu)$. This "strong convergence" implies the following "weak convergence": for any function $g \in L^2(\mu)$, we have

$$\lim_{M-N\to+\infty} \int g\left(\frac{1}{M-N}\sum_{n=N}^{M-1} T^n f\right) d\mu = \int g \cdot f_{inv} \ d\mu,$$

which is a consequence of the mean ergodic theorem (prove it by taking the difference of the two expressions above and use the Cauchy-Schwarz inequality)

We apply this for $g = f = \mathbb{1}_A$ to deduce that

$$\lim_{M-N\to+\infty} \frac{1}{M-N} \sum_{n=N}^{M-1} \int f \cdot T^n f d\mu = \int f \cdot f_{inv} \ d\mu.$$

A simple calculation yields

$$\int f \cdot T^n f \ d\mu = \int \mathbb{1}_A \cdot T^n \mathbb{1}_A \ d\mu = \int \mathbb{1}_{A \cap T^{-n} A} \ d\mu = \mu(A \cap T^{-n} A).$$

In addition, we have

$$\int f \cdot f_{inv} d\mu = \int \overline{f} \cdot f_{inv} d\mu = \int |f_{inv}|^2 d\mu + \int \overline{f_{erg}} \cdot f_{inv} d\mu = \int |f_{inv}|^2 d\mu \ge \left| \int f_{inv} d\mu \right|^2,$$

where we used the fact that f_{erg} is orthogonal to f_{inv} and the Cauchy-Schwarz inequality in the last step. In addition, we have $\int f_{inv} d\mu = \int f d\mu = \mu(A)$, since $\int f_{erg} = 0$ (it is orthogonal to the constant function 1).

Putting everything together, we conclude that

$$\lim_{M-N\to+\infty} \frac{1}{M-N} \sum_{n=N}^{M-1} \mu(A \cap T^{-n}A) \ge (\mu(A))^2.$$

Therefore, there exists $K \in \mathbb{N}$, such that for all natural numbers N < M with N - M > K, we have

$$\frac{1}{M-N} \sum_{n=N}^{M-1} \mu(A \cap T^{-n}A) \ge (\mu(A))^2 - \varepsilon.$$

This shows that the set of n for which $\mu(A \cap T^{-n}A) \geq (\mu(A))^2 - \varepsilon$ has gaps bounded by 2K. Indeed, if that was not the case, one could find N < M with N - M > 2K, such that all $n \in [N, M] \cap \mathbb{N}$ satisfy $\mu(A \cap T^{-n}A) < (\mu(A))^2 - \varepsilon$. This contradicts the fact that the average above is larger than $(\mu(A))^2 - \varepsilon$, because if each term of the average is strictly smaller than $(\mu(A))^2 - \varepsilon$, then their average cannot exceed $(\mu(A))^2 - \varepsilon$.

P2. Prove that the sequence $(x_n)_{n\in\mathbb{N}}$ is uniformly distributed mod 1 if and only if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \{x_n\}^h = \frac{1}{h+1}, \forall h \in \mathbb{N}.$$

 (\Longrightarrow) If the sequence is uniformly distributed, then Weyl's criterion applied to the function $f(x)=x^l$ implies that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \{x_n\}^h = \int_0^1 x^h dx = \frac{x^{h+1}}{h+1} \Big|_0^1 = \frac{1}{h+1}.$$

(\Leftarrow) For the other direction, consider the family $\mathcal{A} = \operatorname{span}\{x^h \mid x \in [0,1], h \in \mathbb{N}_0\}$. By hypothesis and linearity, we have that for all $f \in \mathcal{A}$.

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) = \int_{0}^{1} f(x) dx.$$

Notice that \mathcal{A} is also a subalgebra of C([0,1]) (that is, a vector subspace of C([0,1]) that is closed under multiplication of functions) and it is trivially closed under taking complex conjugation. Also, it separates points (given that the identity f(x) = x is part of the family) and contains the constant functions. Thus, by the Stone-Weierstrass Theorem, we have that \mathcal{A} is dense in C([0,1]). Let $f \in C([0,1])$ and let $(f_k)_k \subseteq \mathcal{A}$, such that $f_n \to f$ as $n \to \infty$.

Notice that

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) - \int_{0}^{1} f(x) dx \right|$$

$$\leq \left| \frac{1}{N} \sum_{n=1}^{N} (f(\{x_n\}) - f_k(\{x_n\})) \right| + \left| \int_{0}^{1} (f_k(x) - f(x)) dx \right| + \left| \frac{1}{N} \sum_{n=1}^{N} f_k(\{x_n\}) - \int_{0}^{1} f_k(x) dx \right|$$

$$\leq 2 \|f - f_k\|_{\infty} + \left| \frac{1}{N} \sum_{n=1}^{N} f_k(\{x_n\}) - \int_{0}^{1} f_k(x) dx \right|.$$

Taking limits, we infer that

$$\lim_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) - \int_0^1 f(x) dx \right| \le 2||f - f_k||_{\infty},$$

and taking $k \to \infty$,

$$\limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) - \int_{0}^{1} f(x) dx \right| \le 0.$$

Thus, we conclude that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) = \int_{0}^{1} f(x) dx,$$

which implies that $\{x_n\}$ is equidistributed by Weyl's criterion.

P3. (a) Prove that the sequence $(\log n)_{n\in\mathbb{N}}$ is not uniformly distributed mod 1.

Hint: Use Euler's summation formula: If $N \in \mathbb{N}$ and $F \in C^1([1, N])$, then

$$\sum_{n=1}^{N} F(n) = \int_{1}^{N} F(t)dt + \frac{F(1) + F(N)}{2} + \int_{1}^{N} \left(\{t\} - \frac{1}{2} \right) F'(t)dt,$$

where F' is the derivate of F.

We will use the Weyl's equidistribution criterion. Let $F(n) = e(\log n)$. Using the hint, we have that

$$\frac{1}{N} \sum_{n=1}^{N} e(\log n) = \frac{1}{N} \int_{1}^{N} e(\log t) dt + \frac{1 + e(\log N)}{2N} + \frac{2\pi i}{N} \int_{1}^{N} \left(\{t\} - \frac{1}{2} \right) \frac{e(\log t)}{t} dt.$$

The second term of the sum is $O(N^{-1})$ and, hence, goes to 0 as $N \to \infty$. For the third term, we have that

$$\left|\frac{2\pi i}{N}\int_1^N \left(\{t\} - \frac{1}{2}\right) \frac{e(\log t)}{t} dt\right| \leq \frac{2\pi}{N}\int_1^N \left|\{t\} - \frac{1}{2}\right| \frac{1}{t} \leq \frac{\pi \log N}{N},$$

which goes to 0 as $N \to \infty$. Finally, for the first term, we have that

$$\frac{1}{N} \int_{1}^{N} e(\log t) dt = \frac{1}{N} \int_{0}^{\log N} e^{(2\pi i + 1)u} du = \frac{e^{(2\pi i + 1)\log N} - 1}{N(2\pi i + 1)} = \frac{e(\log N)}{(2\pi i + 1)} - \frac{1}{N(2\pi i + 1)}.$$

Notice that this sequence does not converge as $e(\log N)$ does not converge. Therefore, $(\log n)_n$ is not uniformly equidistributed mod 1.

(b) Optional: We say that a sequence $x_n \in [0,1)$ is uniformly distributed with respect to logarithmic averages¹ if for every $0 \le a \le b \le 1$, we have

$$\lim_{N \to +\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{\mathbb{1}_{[a,b)}(x_n)}{n} = (b-a).$$

Prove that if a sequence is uniformly distributed in the classical sense, then it is uniformly distributed with respect to logarithmic averages.

Hint: Use summation by parts.

Compare this to the classical notion of uniform distribution using the Cesàro averages $\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}_{[a,b)}(x_n)$.

Fix an arbitrary interval [a,b) in [0,1). We let $S_M = \sum_{n=1}^M \mathbb{1}_{[a,b)}(x_n)$ (we define $S_0 = 0$) and our assumption is that $S_M/M \to (b-a)$ as $M \to +\infty$. We write

$$\frac{1}{\log N} \sum_{n=1}^{N} \frac{\mathbb{1}_{[a,b)}(x_n)}{n} = \frac{1}{\log N} \sum_{n=1}^{N} \frac{S_n - S_{n-1}}{n} = \frac{1}{\log N} \sum_{n=1}^{N-1} S_n (\frac{1}{n} - \frac{1}{n+1}) + \frac{S_N}{N \log N}.$$
 (1)

Using our hypothesis, we have that the second term tends to zero as $N \to +\infty$. To handle the first sum, fix $\varepsilon > 0$ and find $N_0 \in \mathbb{N}$ such that $\left| \frac{S_n}{n} - (b-a) \right| < \varepsilon$ for all $n \geq N_0$. Therefore, we have

$$\left| \frac{S_n}{n(n+1)} - \frac{b-a}{n+1} \right| \le \frac{\varepsilon}{n+1}$$

for all $n \geq N_0$. Hence

$$\left| \sum_{n=N_0}^{N} \frac{S_n}{n(n+1)} - \varepsilon \sum_{n=N_0}^{N} \frac{b-a}{n+1} \right| \le \varepsilon \sum_{n=N_0}^{N} \frac{1}{n+1}$$

For the contribution of the terms with $n \leq N_0 - 1$, we use a crude bound

$$\left| \sum_{n=1}^{N_0 - 1} \frac{S_n}{n(n+1)} - \sum_{n=1}^{N_0 - 1} \frac{b - a}{n+1} \right| \le \sum_{n=1}^{N_0 - 1} \left| \frac{S_n}{n(n+1)} - \frac{b - a}{n+1} \right| \le 100 N_0.$$

Therefore,

$$\left| \frac{1}{\log N} \sum_{n=1}^{N} \frac{S_n}{n(n+1)} - \frac{1}{\log N} \sum_{n=1}^{N} \frac{b-a}{n+1} \right| \le \frac{1}{\log N} \left(100N_0 + \sum_{n=N_0}^{N} \frac{1}{n+1} \right).$$

Using the fact that

$$\lim_{N \to +\infty} \frac{1}{\log N} \left(1 + \frac{1}{2} + \dots + \frac{1}{N} \right) = 1$$

we conclude that

$$\limsup_{N \to +\infty} \left| \frac{1}{\log N} \sum_{n=1}^{N} \frac{S_n}{n(n+1)} - (b-a) \right| \le \varepsilon.$$

Since ε was arbitrary, we deduce that

$$\lim_{N \to +\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{S_n}{n(n+1)} = b - a.$$

Plugging this in (1), we deduce that

$$\lim_{N \to +\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{\mathbb{1}_{[a,b)}(x_n)}{n} = b - a.$$

Since a, b were arbitrary, we reach our conclusion.

(c) Prove that the sequence $\log n \pmod{1}$ is uniformly distributed with respect to logarithmic averages. Conclude, in particular, that the sequence $\{\log n\}$ is dense in [0,1] (you may assume without proof in this exercise that Weyl's criterion holds for logarithmic averages).

It suffices to show that for any $m \in \mathbb{Z}$ not equal to zero, we have

$$\frac{1}{\log N} \sum_{n=1}^{N} \frac{e(m\{\log n\})}{n} = 0.$$
 (2)

This follows using the same arguments used in the proof of Weyl's criterion by replacing Cesàro averages with logarithmic averages.

We apply Euler's summation formula to the function $F(t) = \frac{e(m \log t)}{t}$ to deduce that

$$\sum_{n=1}^{N} \frac{e(m \log n)}{n} = \int_{1}^{N} \frac{e(m \log t)}{t} dt + \frac{1 + \frac{e(m \log N)}{N}}{2} + \int_{1}^{N} \left(\{t\} - \frac{1}{2} \right) \frac{(2\pi i m - 1)e(m \log t)}{t^2} dt.$$
(3)

It suffices to show that each term in the sum is $o(\log N)$. We handle the second term first, since it is simpler. We have that

$$\left| \frac{1}{\log N} \cdot \frac{N + e(m \log n)}{2N} \right| \le \frac{N+1}{2N \log N} \to 0 \text{ as } N \to +\infty.$$

We now work with the third term in (3). We have

$$\frac{1}{\log N} \left| \int_{1}^{N} \left(\{t\} - \frac{1}{2} \right) \frac{(2\pi i m - 1)e(m \log t)}{t^{2}} dt \right| \leq \frac{1}{\log N} \int_{1}^{N} \left| \frac{(2\pi i m - 1)e(m \log t)}{t^{2}} \left(\{t\} - \frac{1}{2} \right) \right| dt \leq \frac{|2\pi i m - 1|}{\log N} \int_{1}^{N} \frac{dt}{t^{2}} \left(\{t\} + \frac{1}{2} \right) < \frac{3|2\pi i m - 1|}{2 \log N},$$

using the fact that $\{t\} \leq 1$ for all $t \in \mathbb{R}$ and that $\int_1^N \frac{dt}{t^2} < 1$ for all $N \in \mathbb{N}$. Thus, the third term is also $o(\log N)$ (in fact, the corresponding integral is bounded). Finally, we estimate the first term:

$$\frac{1}{\log N} \left| \int_{1}^{N} \frac{e(m \log t)}{t} dt \right|$$

Here, we calculate

$$\int_{1}^{N} \frac{e(m \log t)}{t} dt = \int_{1}^{N} \left(\frac{e(m \log t)}{2\pi i m} \right)' dt = \frac{e(m \log t)}{2\pi i m} \Big|_{1}^{N} = \frac{e(m \log N) - 1}{2\pi i m}$$

and, thus,

$$\left| \frac{1}{\log N} \left| \int_1^N \frac{e(m \log t)}{t} dt \right| = \frac{1}{\log N} \frac{|e(m \log N) - 1|}{2|\pi i m|} \le \frac{1}{\pi m \log N}.$$

Combining everything together, we conclude that

$$\lim_{N \to +\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{e(m \log n)}{n} = 0$$

and thus (3) holds.

The fact that $\{\log n\}$ is dense is now obvious, since for any interval (a,b) there exist infinitely many $n \in \mathbb{N}$ such that $\mathbb{1}_{[a,b)}(\{\log n\}) = 1$.

P4. Let (y_n) be a sequence of distinct integers. For every $m \in \mathbb{N}$ define the sequence of functions

$$S_{m,N}(x) = \frac{1}{N} \sum_{n=1}^{N} e(my_n x).$$

(a) Prove that $S_{m,N}(x) \to 0$ as $N \to +\infty$ for almost all $x \in [0,1]$.

Hint: Compute $||S_{m,N^2}(x)||_{L^2([0,1))}$ and show that $S_{m,N^2}(x) \to 0$ for almost all (with respect to the Lebesgue measure) $x \in [0, 1]$.

For all $N \in \mathbb{N}$, we have

For all
$$N \in \mathbb{N}$$
, we have
$$\int_0^1 |S_{m,N}(x)|^2 dx = \frac{1}{N^2} \int_0^1 \sum_{1 \le n_1, n_2 \le N} e(my_{n_1}x - my_{n_2}x) dx = \frac{1}{N^2} \sum_{1 \le n_1, n_2 \le N} \mathbb{1}_{n_1 = n_2} = \frac{1}{N}.$$

where we used the fact that

$$\int_0^1 e(kx) = \begin{cases} 1, & k = 0 \\ 0, & \text{otherwise} \end{cases}.$$

Thus, we conclude that

$$\sum_{N=1}^{+\infty} \int_0^1 \left| S_{m,N^2}(x) \right|^2 dx = \sum_{n=1}^{+\infty} \frac{1}{N^2} < +\infty$$

and the monotone convergence theorem implies that

$$\int_0^1 \sum_{N=1}^{+\infty} \left| S_{m,N^2}(x) \right|^2 dx = \sum_{N=1}^{+\infty} \int_0^1 \left| S_{m,N^2}(x) \right|^2 dx < +\infty.$$

We conclude that for almost all $x \in [0,1]$ the series $\sum_{N=1}^{+\infty} |S_{m,N^2}(x)|^2$ is finite. Hence, we have $\lim_{N\to+\infty} S_{m,N^2}(x) \to 0$ for almost all $x\in[0,1]$.

Now, given a positive integer N, we find an integer k such that $k^2 \leq N < (k+1)^2$. We

$$|S_{m,N}(x)| \leq \left| \frac{1}{N} \sum_{n=1}^{k^2} e(my_n x) \right| + \left| \frac{1}{N} \sum_{k^2 < n \leq N} e(my_n x) \right| \leq \left| \frac{1}{k^2} \sum_{n=1}^{k^2} e(my_n x) \right| + \frac{2k}{N} = \left| S_{m,k^2}(x) \right| + \frac{2}{k}.$$
We conclude that $\lim_{N \to +\infty} S_{m,N}(x) = 0$ for almost all $x \in [0,1]$.

(b) Prove that for almost all $a \in [0,1]$, the sequence $(y_n a)_{n \in \mathbb{N}}$ is uniformly distributed mod 1. As an application, conclude that for almost all real numbers the sequence $\{b^n x\}$ is uniformly distributed mod 1 for all $b \in \mathbb{N}$ with $b \geq 2$.

For every $m \in \mathbb{N}$, define the set

$$A_m = \{ x \in [0,1] : |S_{m,N}(x)| \not\to 0 \}.$$

We have shown that $\mu(A_m) = 0$ for all $m \in \mathbb{N}$, and thus $\mu(\bigcup_{m \in \mathbb{N}} A_m) = 0$. Therefore, for every

6

 $x \in [0,1] \setminus \left(\bigcup_{m \in \mathbb{N}} A_m\right)$ we have that

$$\lim \frac{1}{N} \sum_{n=1}^{N} e(my_n x) = 0$$

and hence the sequence $(y_n x)$ is uniformly distributed mod 1 by Weyl's criterion. Since the set $[0,1] \setminus (\bigcup_{m \in \mathbb{N}} A_m)$ has measure 1, this establishes our claim.

First, our previous claims imply that, for a fixed $b \ge 2$, almost all real numbers in [0,1] satisfy that $\{b^nx\}$ is uniformly distributed. More precisely, let A_b be the set of all $x \in [0,1]$ such that the sequence $\{b^nx\}$ is not uniformly distributed. Then, $\mu(A_b) = 0$ and, thus, $\mu(\bigcup_{b\ge 2} A_b) = 0$. For every $x \in [0,1] \setminus \bigcup_{b>2} A_q$, we have that $\{b^nx\}$ is uniformly distributed for all integers $b \ge 2$.

To show the claim for almost all real numbers, we observe that x satisfies the property in the statement if and only if $x - \lfloor x \rfloor$ satisfies the same property. Thus, for any $k \in \mathbb{Z}$, we have

 $\mu\left(\left\{x\in[k,k+1]\colon \text{ there exists } b \text{ such that } \left\{b^nx\right\} \text{ is not uniformly distributed}\right\}\right)=0.$

The conclusion follows from the fact that a countable union of zero measure sets has measure zero.