
Ergodic Theory - Week 3

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Uniform Distribution of Sequences

P1. Let (X,A, µ, T ) be a measure-preserving system and let A ∈ A be a set of positive measure.
Prove Khintchine’s theorem: for any ε > 0, the set

{n ∈ N : µ(A ∩ T−nA) ≥ (µ(A))2 − ε}

has bounded gaps.

Let f = 1A be the indicator function of our set A and let ε > 0. Applying the uniform mean
ergodic theorem from the last notes, we deduce that

ĺım
M−N→+∞

1

M −N

M−1∑
n=N

Tnf = finv.

where convergence takes place in L2(µ). This “strong convergence” implies the following “weak
convergence”: for any function g ∈ L2(µ), we have

ĺım
M−N→+∞

∫
g

(
1

M −N

M−1∑
n=N

Tnf

)
dµ =

∫
g · finv dµ,

which is a consequence of the mean ergodic theorem (prove it by taking the difference of the
two expressions above and use the Cauchy-Schwarz inequality)

We apply this for g = f = 1A to deduce that

ĺım
M−N→+∞

1

M −N

M−1∑
n=N

∫
f · Tnfdµ =

∫
f · finv dµ.

A simple calculation yields∫
f · Tnf dµ =

∫
1A · Tn1A dµ =

∫
1A∩T−nA dµ = µ(A ∩ T−nA).

In addition, we have∫
f · finvdµ =

∫
f · finvdµ =

∫
|finv|2 dµ+

∫
ferg · finvdµ =

∫
|finv|2dµ ≥

∣∣∣∣∫ finv dµ

∣∣∣∣2 ,
where we used the fact that ferg is orthogonal to finv and the Cauchy-Schwarz inequality in
the last step. In addition, we have

∫
finv dµ =

∫
f dµ = µ(A), since

∫
ferg = 0 (it is orthogonal

to the constant function 1).
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Putting everything together, we conclude that

ĺım
M−N→+∞

1

M −N

M−1∑
n=N

µ(A ∩ T−nA) ≥ (µ(A))2 .

Therefore, there exists K ∈ N, such that for all natural numbers N < M with N −M > K,
we have

1

M −N

M−1∑
n=N

µ(A ∩ T−nA) ≥ (µ(A))2 − ε.

This shows that the set of n for which µ(A ∩ T−nA) ≥ (µ(A))2 − ε has gaps bounded by 2K.
Indeed, if that was not the case, one could find N < M with N − M > 2K, such that all
n ∈ [N,M ]∩N satisfy µ(A∩ T−nA) < (µ(A))2 − ε. This contradicts the fact that the average
above is larger than (µ(A))2 − ε, because if each term of the average is strictly smaller than
(µ(A))2 − ε, then their average cannot exceed (µ(A))2 − ε.

P2. Prove that the sequence (xn)n∈N is uniformly distributed mod 1 if and only if

ĺım
N→∞

1

N

N∑
n=1

{xn}h =
1

h+ 1
, ∀h ∈ N.

(=⇒) If the sequence is uniformly distributed, then Weyl’s criterion applied to the function
f(x) = xl implies that

ĺım
N→∞

1

N

N∑
n=1

{xn}h =

∫ 1

0
xhdx =

xh+1

h+ 1

∣∣∣∣∣
1

0

=
1

h+ 1
.

(⇐=) For the other direction, consider the family A = span{xh | x ∈ [0, 1], h ∈ N0}. By
hypothesis and linearity, we have that for all f ∈ A.

ĺım
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0
f(x)dx.

Notice that A is also a subalgebra of C([0, 1]) (that is, a vector subspace of C([0, 1]) that
is closed under multiplication of functions) and it is trivially closed under taking complex
conjugation. Also, it separates points (given that the identity f(x) = x is part of the family)
and contains the constant functions. Thus, by the Stone-Weierstrass Theorem, we have that
A is dense in C([0, 1]). Let f ∈ C([0, 1]) and let (fk)k ⊆ A, such that fn → f as n → ∞.

Notice that∣∣∣∣∣ 1N
N∑

n=1

f({xn})−
∫ 1

0
f(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑

n=1

(f({xn} − fk({xn})

∣∣∣∣∣+
∣∣∣∣∫ 1

0
(fk(x)− f(x)) dx

∣∣∣∣+
∣∣∣∣∣ 1N

N∑
n=1

fk({xn})−
∫ 1

0
fk(x)dx

∣∣∣∣∣
≤ 2∥f − fk∥∞ +

∣∣∣∣∣ 1N
N∑

n=1

fk({xn})−
∫ 1

0
fk(x)dx

∣∣∣∣∣ .
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Taking limits, we infer that

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

f({xn})−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ 2||f − fk||∞,

and taking k → ∞,

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

f({xn})−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ 0.

Thus, we conclude that

ĺım
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0
f(x)dx,

which implies that {xn} is equidistributed by Weyl’s criterion.

P3. (a) Prove that the sequence (log n)n∈N is not uniformly distributed mod 1.
Hint: Use Euler’s summation formula: If N ∈ N and F ∈ C1([1, N ]), then

N∑
n=1

F (n) =

∫ N

1
F (t)dt+

F (1) + F (N)

2
+

∫ N

1

(
{t} − 1

2

)
F ′(t)dt,

where F ′ is the derivate of F .

We will use the Weyl’s equidistribution criterion. Let F (n) = e(log n). Using the hint,
we have that

1

N

N∑
n=1

e(log n) =
1

N

∫ N

1
e(log t)dt+

1 + e(logN)

2N
+

2πi

N

∫ N

1

(
{t} − 1

2

)e(log t)
t

dt.

The second term of the sum is O(N−1) and, hence, goes to 0 as N → ∞. For the third
term, we have that∣∣∣∣2πiN

∫ N

1

(
{t} − 1

2

)e(log t)
t

dt

∣∣∣∣ ≤ 2π

N

∫ N

1

∣∣∣∣{t} − 1

2

∣∣∣∣ 1t ≤ π log N

N
,

which goes to 0 as N → ∞. Finally, for the first term, we have that

1

N

∫ N

1
e(log t)dt =

1

N

∫ log N

0
e(2πi+1)udu =

e(2πi+1) log N − 1

N(2πi+ 1)
=

e(logN)

(2πi+ 1)
− 1

N(2πi+ 1)
.

Notice that this sequence does not converge as e(logN) does not converge. Therefore,
(log n)n is not uniformly equidistributed mod 1.

(b) Optional: We say that a sequence xn ∈ [0, 1) is uniformly distributed with respect to
logarithmic averages1 if for every 0 ≤ a ≤ b ≤ 1, we have

ĺım
N→+∞

1

logN

N∑
n=1

1[a,b)(xn)

n
= (b− a).

Prove that if a sequence is uniformly distributed in the classical sense, then it is uniformly
distributed with respect to logarithmic averages.
Hint: Use summation by parts.

1Compare this to the classical notion of uniform distribution using the Cesàro averages 1
N

∑N
n=1 1[a,b)(xn).
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Fix an arbitrary interval [a, b) in [0, 1). We let SM =
∑M

n=1 1[a,b)(xn) (we define S0 = 0)
and our assumption is that SM/M → (b− a) as M → +∞. We write

1

logN

N∑
n=1

1[a,b)(xn)

n
=

1

logN

N∑
n=1

Sn − Sn−1

n
=

1

logN

N−1∑
n=1

Sn(
1

n
− 1

n+ 1
) +

SN

N logN
. (1)

Using our hypothesis, we have that the second term tends to zero as N → +∞. To handle
the first sum, fix ε > 0 and find N0 ∈ N such that

∣∣Sn
n − (b− a)

∣∣ < ε for all n ≥ N0.
Therefore, we have ∣∣∣∣ Sn

n(n+ 1)
− b− a

n+ 1

∣∣∣∣ ≤ ε

n+ 1

for all n ≥ N0. Hence,∣∣∣∣∣∣
N∑

n=N0

Sn

n(n+ 1)
− ε

N∑
n=N0

b− a

n+ 1

∣∣∣∣∣∣ ≤ ε
N∑

n=N0

1

n+ 1

For the contribution of the terms with n ≤ N0 − 1, we use a crude bound∣∣∣∣∣
N0−1∑
n=1

Sn

n(n+ 1)
−

N0−1∑
n=1

b− a

n+ 1

∣∣∣∣∣ ≤
N0−1∑
n=1

∣∣∣∣ Sn

n(n+ 1)
− b− a

n+ 1

∣∣∣∣ ≤ 100N0.

Therefore,∣∣∣∣∣ 1

logN

N∑
n=1

Sn

n(n+ 1)
− 1

logN

N∑
n=1

b− a

n+ 1

∣∣∣∣∣ ≤ 1

logN

100N0 +
N∑

n=N0

1

n+ 1

 .

Using the fact that

ĺım
N→+∞

1

logN

(
1 +

1

2
+ · · ·+ 1

N

)
= 1

we conclude that

lim sup
N→+∞

∣∣∣∣∣ 1

logN

N∑
n=1

Sn

n(n+ 1)
− (b− a)

∣∣∣∣∣ ≤ ε.

Since ε was arbitrary, we deduce that

ĺım
N→+∞

1

logN

N∑
n=1

Sn

n(n+ 1)
= b− a.

Plugging this in (1), we deduce that

ĺım
N→+∞

1

logN

N∑
n=1

1[a,b)(xn)

n
= b− a.

Since a, b were arbitrary, we reach our conclusion.

(c) Prove that the sequence log n (mod 1) is uniformly distributed with respect to logarithmic
averages. Conclude, in particular, that the sequence {log n} is dense in [0, 1] (you may
assume without proof in this exercise that Weyl’s criterion holds for logarithmic averages).

4



It suffices to show that for any m ∈ Z not equal to zero, we have

1

logN

N∑
n=1

e(m{log n})
n

= 0. (2)

This follows using the same arguments used in the proof of Weyl’s criterion by replacing Cesàro
averages with logarithmic averages.

We apply Euler’s summation formula to the function F (t) = e(m log t)
t to deduce that

N∑
n=1

e(m log n)

n
=

∫ N

1

e(m log t)

t
dt+

1 + e(m logN)
N

2
+

∫ N

1

(
{t} − 1

2

)
(2πim− 1)e(m log t)

t2
dt.

(3)
It suffices to show that each term in the sum is o(logN). We handle the second term first,
since it is simpler. We have that∣∣∣∣ 1

logN
· N + e(m log n)

2N

∣∣∣∣ ≤ N + 1

2N logN
→ 0 as N → +∞.

We now work with the third term in (3). We have

1

logN

∣∣∣∣∫ N

1

(
{t} − 1

2

)
(2πim− 1)e(m log t)

t2
dt

∣∣∣∣ ≤ 1

logN

∫ N

1

∣∣∣∣(2πim− 1)e(m log t)

t2

(
{t} − 1

2

)∣∣∣∣ dt ≤
|2πim− 1|

logN

∫ N

1

dt

t2

(
{t}+ 1

2

)
<

3|2πim− 1|
2 logN

,

using the fact that {t} ≤ 1 for all t ∈ R and that
∫ N
1

dt
t2

< 1 for all N ∈ N. Thus, the third
term is also o(logN) (in fact, the corresponding integral is bounded). Finally, we estimate the
first term:

1

logN

∣∣∣∣∫ N

1

e(m log t)

t
dt

∣∣∣∣
Here, we calculate∫ N

1

e(m log t)

t
dt =

∫ N

1

(
e(m log t)

2πim

)′
dt =

e(m log t)

2πim

∣∣∣N
1

=
e(m logN)− 1

2πim

and, thus,
1

logN

∣∣∣∣∫ N

1

e(m log t)

t
dt

∣∣∣∣ = 1

logN

|e(m logN)− 1|
2|πim|

≤ 1

πm logN
.

Combining everything together, we conclude that

ĺım
N→+∞

1

logN

N∑
n=1

e(m log n)

n
= 0

and thus (3) holds.

The fact that {log n} is dense is now obvious, since for any interval (a, b) there exist infinitely
many n ∈ N such that 1[a,b)({log n}) = 1.
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P4. Let (yn) be a sequence of distinct integers. For every m ∈ N define the sequence of functions

Sm,N (x) =
1

N

N∑
n=1

e(mynx).

(a) Prove that Sm,N (x) → 0 as N → +∞ for almost all x ∈ [0, 1].
Hint: Compute ∥Sm,N2(x)∥L2([0,1)) and show that Sm,N2(x) → 0 for almost all (with
respect to the Lebesgue measure) x ∈ [0, 1].

For all N ∈ N, we have∫ 1

0
|Sm,N (x)|2 dx =

1

N2

∫ 1

0

∑
1≤n1,n2≤N

e(myn1x−myn2x)dx =
1

N2

∑
1≤n1,n2≤N

1n1=n2 =
1

N
.

where we used the fact that ∫ 1

0
e(kx) =

{
1, k = 0

0, otherwise
.

Thus, we conclude that

+∞∑
N=1

∫ 1

0

∣∣Sm,N2(x)
∣∣2 dx =

+∞∑
n=1

1

N2
< +∞

and the monotone convergence theorem implies that∫ 1

0

+∞∑
N=1

∣∣Sm,N2(x)
∣∣2 dx =

+∞∑
N=1

∫ 1

0

∣∣Sm,N2(x)
∣∣2 dx < +∞.

We conclude that for almost all x ∈ [0, 1] the series
∑+∞

N=1

∣∣Sm,N2(x)
∣∣2 is finite. Hence,

we have ĺımN→+∞ Sm,N2(x) → 0 for almost all x ∈ [0, 1].

Now, given a positive integer N , we find an integer k such that k2 ≤ N < (k + 1)2. We
have

|Sm,N (x)| ≤

∣∣∣∣∣∣ 1N
k2∑
n=1

e(mynx)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1N

∑
k2<n≤N

e(mynx)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1k2

k2∑
n=1

e(mynx)

∣∣∣∣∣∣+2k

N
=
∣∣Sm,k2(x)

∣∣+2

k
.

We conclude that ĺım
N→+∞

Sm,N (x) = 0 for almost all x ∈ [0, 1].

(b) Prove that for almost all a ∈ [0, 1], the sequence (yna)n∈N is uniformly distributed mod 1.
As an application, conclude that for almost all real numbers the sequence {bnx} is uniformly
distributed mod 1 for all b ∈ N with b ≥ 2.

For every m ∈ N, define the set

Am = {x ∈ [0, 1] : |Sm,N (x)| ̸→ 0}.

We have shown that µ(Am) = 0 for all m ∈ N, and thus µ(
⋃

m∈NAm) = 0. Therefore, for every
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x ∈ [0, 1] \
(⋃

m∈NAm

)
we have that

ĺım
1

N

N∑
n=1

e(mynx) = 0

and hence the sequence (ynx) is uniformly distributed mod 1 by Weyl’s criterion. Since the
set [0, 1] \

(⋃
m∈NAm

)
has measure 1, this establishes our claim.

First, our previous claims imply that, for a fixed b ≥ 2, almost all real numbers in [0, 1] satisfy
that {bnx} is uniformly distributed. More precisely, let Ab be the set of all x ∈ [0, 1] such that
the sequence {bnx} is not uniformly distributed. Then, µ(Ab) = 0 and, thus, µ(

⋃
b≥2Ab) = 0.

For every x ∈ [0, 1]\
⋃

b≥2Aq, we have that {bnx} is uniformly distributed for all integers b ≥ 2.

To show the claim for almost all real numbers, we observe that x satisfies the property in the
statement if and only if x− ⌊x⌋ satisfies the same property. Thus, for any k ∈ Z, we have

µ ({x ∈ [k, k + 1] : there exists b such that {bnx} is not uniformly distributed}) = 0.

The conclusion follows from the fact that a countable union of zero measure sets has measure
zero.
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