Ergodic Theory - Week 3

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Uniform Distribution of Sequences

P1. Let (X, A, u,T) be a measure-preserving system and let A € A be a set of positive measure.
Prove Khintchine’s theorem: for any £ > 0, the set

{neN: p(ANT"A) > (u(A))* — ¢}
has bounded gaps.

Let f = 1 4 be the indicator function of our set A and let € > 0. Applying the uniform mean
ergodic theorem from the last notes, we deduce that
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where convergence takes place in L?(1). This “strong convergence” implies the following “weak
convergence”: for any function g € L?(p), we have
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which is a consequence of the mean ergodic theorem (prove it by taking the difference of the
two expressions above and use the Cauchy-Schwarz inequality)

We apply this for g = f = 1 4 to deduce that

M—
1
lim ——

1
M-NStoo M~ N & /f'T fd#Z/f'finv dy.

=N

A simple calculation yields
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In addition, we have
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where we used the fact that f.., is orthogonal to f;;, and the Cauchy-Schwarz inequality in
the last step. In addition, we have [ fin, du = [ f dp = pu(A), since [ ferg = 0 (it is orthogonal
to the constant function 1).
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Putting everything together, we conclude that
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Therefore, there exists K € N, such that for all natural numbers N < M with N — M > K,

we have
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This shows that the set of n for which u(ANT"A) > (u(A))? — ¢ has gaps bounded by 2K.
Indeed, if that was not the case, one could find N < M with N — M > 2K, such that all
n € [N, M]NN satisfy p(ANT™"A) < (u(A))* —e. This contradicts the fact that the average
above is larger than (u(A))? — €, because if each term of the average is strictly smaller than

(11(A))? — &, then their average cannot exceed (u(A))* — e.

P2. Prove that the sequence (xy)nen is uniformly distributed mod 1 if and only if

lim — = —
NgnooNZ{x} -, VhEN.

(=) If the sequence is uniformly distributed, then Weyl’s criterion applied to the function
f(z) = z! implies that
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(¢<=) For the other direction, consider the family A = span{z" | = € [0,1],h € Ng}. By
hypothesis and linearity, we have that for all f € A.

i NZf{xn} = [ sy

Notice that A is also a subalgebra of C(]0,1]) (that is, a vector subspace of C([0,1]) that
is closed under multiplication of functions) and it is trivially closed under taking complex
conjugation. Also, it separates points (given that the identity f(x) = z is part of the family)
and contains the constant functions. Thus, by the Stone-Weierstrass Theorem, we have that
A is dense in C([0,1]). Let f € C(]0,1]) and let (fx)r C A, such that f,, — f as n — co.

Notice that
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Taking limits, we infer that

s | 3 A(Gr)) | St <215 = il
and taking k£ — oo,
1< !
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Thus, we conclude that N

which implies that {z,} is equidistributed by Weyl’s criterion.

P3. (a) Prove that the sequence (logn),en is not uniformly distributed mod 1.
Hint: Use Euler’s summation formula: If N € N and F € C*([1, N]), then

N
ZF(n) = /1N F(t)dt + F(l)J;F(N) + /IN ({t} — %)F’(t)dt,
n=1

where F' is the derivate of F.

We will use the Weyl’s equidistribution criterion. Let F'(n) = e(logn). Using the hint,
we have that

N N . N
1 1 1+e(logN) = 2mi / 1\ e(logt)
— 1 =— logt)dt + —————= + — ty— = dt.
v o eliogm) = [ etogtiar+ —-5RE + 58 [ (181 - 5)

t

The second term of the sum is O(N~!) and, hence, goes to 0 as N — oc. For the third
term, we have that
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which goes to 0 as N — oo. Finally, for the first term, we have that
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Notice that this sequence does not converge as e(log N) does not converge. Therefore,
(logn)y, is not uniformly equidistributed mod 1.

(b) Optional: We say that a sequence x,, € [0,1) is uniformly distributed with respect to
logarithmic averages' if for every 0 < a < b < 1, we have
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Prove that if a sequence is uniformly distributed in the classical sense, then it is uniformly
distributed with respect to logarithmic averages.
Hint: Use summation by parts.

'Compare this to the classical notion of uniform distribution using the Cesaro averages 22’:1 L) (Tn)-



Fix an arbitrary interval [a,b) in [0,1). We let Sy, = Z?le Ly ) (75) (we define Sy = 0)
and our assumption is that Sy, /M — (b — a) as M — +o00. We write
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Using our hypothesis, we have that the second term tends to zero as N — +o0. To handle
the first sum, fix ¢ > 0 and find Ny € N such that ‘S b—a)’ < ¢ for all n > Nj.
Therefore, we have
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For the contribution of the terms with n < Ny — 1, we use a crude bound
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Using the fact that
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we conclude that N
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Since € was arbitrary, we deduce that
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Plugging this in (1), we deduce that
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Since a, b were arbitrary, we reach our conclusion.

(c) Prove that the sequence logn (mod 1) is uniformly distributed with respect to logarithmic
averages. Conclude, in particular, that the sequence {logn} is dense in [0, 1] (you may
assume without proof in this exercise that Weyl’s criterion holds for logarithmic averages).



It suffices to show that for any m € Z not equal to zero, we have

1 & e(m{logn})
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This follows using the same arguments used in the proof of Weyl’s criterion by replacing Cesaro
averages with logarithmic averages.

We apply Euler’s summation formula to the function F(t) = w to deduce that
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It suffices to show that each term in the sum is o(log V). We handle the second term first,
since it is simpler. We have that
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We now work with the third term in (3). We have
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using the fact that {t} < 1 for all t € R and that fN ft < 1 for all N € N. Thus, the third
term is also o(log V) (in fact, the corresponding integral is bounded). Finally, we estimate the
first term:

1 N e(mlogt)

t

i

Here, we calculate
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Combining everything together, we conclude that
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and thus (3) holds.

The fact that {logn} is dense is now obvious, since for any interval (a,b) there exist infinitely
many n € N such that 1, ({logn}) = 1.



P4. Let (y,) be a sequence of distinct integers. For every m € N define the sequence of functions

N

Sm,n(T) = % Z e(mynx).

n=1

(a) Prove that Sy, n(x) — 0 as N — 400 for almost all z € [0, 1].
Hint: Compute |5, n2(%)|[z2(0,1)) and show that S, y2(z) — 0 for almost all (with
respect to the Lebesgue measure) x € [0, 1].

For all N € N, we have
1

1
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where we used the fact that

Thus, we conclude that
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and the monotone convergence theorem implies that
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We conclude that for almost all = € [0,1] the series 1> |5, 2 (x)‘2 is finite. Hence,
we have limpy_, o0 Sy, n2(2) — 0 for almost all z € [0, 1].

Now, given a positive integer N, we find an integer k such that k2 < N < (k +1)2. We
have

k2
1 2

We conclude that lim S, n(x) = 0 for almost all = € [0, 1].
N—r+o00

(b) Prove that for almost all a € [0, 1], the sequence (y,a)nen is uniformly distributed mod 1.
As an application, conclude that for almost all real numbers the sequence {b"z} is uniformly
distributed mod 1 for all b € N with b > 2.

For every m € N, define the set
Ay =A{z €[0,1]: |Sm,n(z)| 4 0}.

We have shown that ;1(A,,) = 0 for all m € N, and thus p(lJ,,cy Am) = 0. Therefore, for every




2 € [0,1]\ (Upneny Am) we have that

1 N
lim N Z e(mypz) =0

n=1

and hence the sequence (y,x) is uniformly distributed mod 1 by Weyl’s criterion. Since the
set [0,1] \ (U,nen Am) has measure 1, this establishes our claim.

First, our previous claims imply that, for a fixed b > 2, almost all real numbers in [0, 1] satisfy
that {b"z} is uniformly distributed. More precisely, let A; be the set of all z € [0, 1] such that
the sequence {b"z} is not uniformly distributed. Then, p(Ap) = 0 and, thus, pu(|UJysq As) = 0.
For every z € [0,1]\Uysq Ag, we have that {"z} is uniformly distributed for all integers b > 2.

To show the claim for almost all real numbers, we observe that x satisfies the property in the
statement if and only if x — |z | satisfies the same property. Thus, for any k € Z, we have

pu({z € [k, k+1]: there exists b such that {b"z} is not uniformly distributed}) = 0.

The conclusion follows from the fact that a countable union of zero measure sets has measure
Zero.



